Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 14(645): eabj9152, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35584231

RESUMO

Burns and other traumatic injuries represent a substantial biomedical burden. The current standard of care for deep injuries is autologous split-thickness skin grafting (STSG), which frequently results in contractures, abnormal pigmentation, and loss of biomechanical function. Currently, there are no effective therapies that can prevent fibrosis and contracture after STSG. Here, we have developed a clinically relevant porcine model of STSG and comprehensively characterized porcine cell populations involved in healing with single-cell resolution. We identified an up-regulation of proinflammatory and mechanotransduction signaling pathways in standard STSGs. Blocking mechanotransduction with a small-molecule focal adhesion kinase (FAK) inhibitor promoted healing, reduced contracture, mitigated scar formation, restored collagen architecture, and ultimately improved graft biomechanical properties. Acute mechanotransduction blockade up-regulated myeloid CXCL10-mediated anti-inflammation with decreased CXCL14-mediated myeloid and fibroblast recruitment. At later time points, mechanical signaling shifted fibroblasts toward profibrotic differentiation fates, and disruption of mechanotransduction modulated mesenchymal fibroblast differentiation states to block those responses, instead driving fibroblasts toward proregenerative, adipogenic states similar to unwounded skin. We then confirmed these two diverging fibroblast transcriptional trajectories in human skin, human scar, and a three-dimensional organotypic model of human skin. Together, pharmacological blockade of mechanotransduction markedly improved large animal healing after STSG by promoting both early, anti-inflammatory and late, regenerative transcriptional programs, resulting in healed tissue similar to unwounded skin. FAK inhibition could therefore supplement the current standard of care for traumatic and burn injuries.


Assuntos
Queimaduras , Contratura , Animais , Queimaduras/patologia , Cicatriz/patologia , Contratura/patologia , Mecanotransdução Celular , Pele/patologia , Transplante de Pele/métodos , Suínos
2.
Wound Repair Regen ; 30(3): 397-408, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35384131

RESUMO

Biological scaffolds such as hydrogels provide an ideal, physio-mimetic of native extracellular matrix (ECM) that can improve wound healing outcomes after cutaneous injury. While most studies have focused on the benefits of hydrogels in accelerating wound healing, there are minimal data directly comparing different hydrogel material compositions. In this study, we utilized a splinted excisional wound model that recapitulates human-like wound healing in mice and treated wounds with three different collagen hydrogel dressings. We assessed the feasibility of applying each dressing and performed histologic and histopathologic analysis on the explanted scar tissues to assess variations in collagen architecture and alignment, as well as the tissue response. Our data indicate that the material properties of hydrogel dressings can significantly influence healing time, cellular response, and resulting architecture of healed scars. Specifically, our pullulan-collagen hydrogel dressing accelerated wound closure and promoted healed tissue with less dense, more randomly aligned, and shorter collagen fibres. Further understanding of how hydrogel properties affect the healing and resulting scar architecture of wounds may lead to novel insights and further optimization of the material properties of wound dressings.


Assuntos
Hidrogéis , Cicatrização , Animais , Bandagens , Cicatriz , Colágeno/farmacologia , Glucanos , Hidrogéis/farmacologia , Camundongos
3.
Nat Commun ; 12(1): 5256, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489407

RESUMO

Tissue repair and healing remain among the most complicated processes that occur during postnatal life. Humans and other large organisms heal by forming fibrotic scar tissue with diminished function, while smaller organisms respond with scarless tissue regeneration and functional restoration. Well-established scaling principles reveal that organism size exponentially correlates with peak tissue forces during movement, and evolutionary responses have compensated by strengthening organ-level mechanical properties. How these adaptations may affect tissue injury has not been previously examined in large animals and humans. Here, we show that blocking mechanotransduction signaling through the focal adhesion kinase pathway in large animals significantly accelerates wound healing and enhances regeneration of skin with secondary structures such as hair follicles. In human cells, we demonstrate that mechanical forces shift fibroblasts toward pro-fibrotic phenotypes driven by ERK-YAP activation, leading to myofibroblast differentiation and excessive collagen production. Disruption of mechanical signaling specifically abrogates these responses and instead promotes regenerative fibroblast clusters characterized by AKT-EGR1.


Assuntos
Indóis/farmacologia , Mecanotransdução Celular/fisiologia , Pele/lesões , Sulfonamidas/farmacologia , Cicatrização/fisiologia , Animais , Diferenciação Celular , Células Cultivadas , Colágeno/metabolismo , Feminino , Fibroblastos , Quinase 1 de Adesão Focal/antagonistas & inibidores , Quinase 1 de Adesão Focal/metabolismo , Regeneração Tecidual Guiada , Humanos , Indóis/sangue , Mecanotransdução Celular/efeitos dos fármacos , Análise de Sequência de RNA , Análise de Célula Única , Pele/efeitos dos fármacos , Pele/patologia , Fenômenos Fisiológicos da Pele , Estresse Mecânico , Sulfonamidas/sangue , Suínos , Cicatrização/efeitos dos fármacos
4.
Neurobiol Aging ; 81: 177-189, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31306812

RESUMO

Parkinson's disease (PD) is often managed with L-3,4-dihydroxyphenylalanine (L-DOPA), which is still the gold standard to relieve the clinical motor symptoms of PD. However, chronic use of L-DOPA leads to significant motor complications, especially L-DOPA-induced dyskinesia (LID), which limit the therapeutic benefit. Few options are available for the pharmacological management of LID partly due to the inadequacy of our mechanistic understanding of the syndrome. We focused on the role of the histamine (HA) H2 receptor (H2R) in the striatum, which others have shown to be involved in the development of LID. We generated LID in a hemiparkinsonian mouse model and tested the signaling effects of ranitidine, an H2R antagonist. We used histidine decarboxylase deficient mice (Hdc-Ko) which lacks HA to study the role of G-protein-coupled receptor kinases (GRKs) in HA deficiency. Loss of HA in Hdc-Ko mice did not result in the downregulation of GRKs, especially GRK3 and GRK6, which were previously found to be reduced in hemiparkinsonian animal models. Ranitidine, when given along with L-DOPA, normalized the expression of GRK3 in the dopamine-depleted striatum thereby inhibiting LID in mice. The extracellular signal regulated kinase and ΔFosB signaling pathways were attenuated in the lesioned striatum when ranitidine was combined with L-DOPA than L-DOPA alone. These results demonstrate that ranitidine inhibits LID by normalizing the levels of GRK3, extracellular signal regulated kinase activation, and FosB accumulation in the dopamine-depleted striatum via HA H2R antagonism.


Assuntos
Discinesia Induzida por Medicamentos/etiologia , Discinesia Induzida por Medicamentos/prevenção & controle , Quinase 3 de Receptor Acoplado a Proteína G/metabolismo , Antagonistas dos Receptores H2 da Histamina/uso terapêutico , Levodopa/efeitos adversos , Doença de Parkinson/tratamento farmacológico , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ranitidina/uso terapêutico , Animais , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Levodopa/uso terapêutico , Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos C57BL , Doença de Parkinson/metabolismo , Receptores Histamínicos H2
5.
J Neurosci ; 38(50): 10672-10691, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30381406

RESUMO

The immunopathological states of the brain induced by bacterial lipoproteins have been well characterized by using biochemical and histological assays. However, these studies have limitations in determining functional states of damaged brains involving aberrant synaptic activity and network, which makes it difficult to diagnose brain disorders during bacterial infection. To address this, we investigated the effect of Pam3CSK4 (PAM), a synthetic bacterial lipopeptide, on synaptic dysfunction of female mice brains and cultured neurons in parallel. Our functional brain imaging using PET with [18F]fluorodeoxyglucose and [18F] flumazenil revealed that the brain dysfunction induced by PAM is closely aligned to disruption of neurotransmitter-related neuronal activity and functional correlation in the region of the limbic system rather than to decrease of metabolic activity of neurons in the injection area. This finding was verified by in vivo tissue experiments that analyzed synaptic and dendritic alterations in the regions where PET imaging showed abnormal neuronal activity and network. Recording of synaptic activity also revealed that PAM reorganized synaptic distribution and decreased synaptic plasticity in hippocampus. Further study using in vitro neuron cultures demonstrated that PAM decreased the number of presynapses and the frequency of miniature EPSCs, which suggests PAM disrupts neuronal function by damaging presynapses exclusively. We also showed that PAM caused aggregation of synapses around dendrites, which may have caused no significant change in expression level of synaptic proteins, whereas synaptic number and function were impaired by PAM. Our findings could provide a useful guide for diagnosis and treatment of brain disorders specific to bacterial infection.SIGNIFICANCE STATEMENT It is challenging to diagnose brain disorders caused by bacterial infection because neural damage induced by bacterial products involves nonspecific neurological symptoms, which is rarely detected by laboratory tests with low spatiotemporal resolution. To better understand brain pathology, it is essential to detect functional abnormalities of brain over time. To this end, we investigated characteristic patterns of altered neuronal integrity and functional correlation between various regions in mice brains injected with bacterial lipopeptides using PET with a goal to apply new findings to diagnosis of brain disorder specific to bacterial infection. In addition, we analyzed altered synaptic density and function using both in vivo and in vitro experimental models to understand how bacterial lipopeptides impair brain function and network.


Assuntos
Encéfalo/diagnóstico por imagem , Lipopeptídeos/toxicidade , Rede Nervosa/diagnóstico por imagem , Neurônios/patologia , Animais , Encéfalo/efeitos dos fármacos , Células Cultivadas , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Tomografia por Emissão de Pósitrons/métodos , Ratos , Ratos Sprague-Dawley , Roedores
6.
Sensors (Basel) ; 15(9): 24662-80, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26404317

RESUMO

Semiconductor nanocrystals (NCs) or quantum dots (QDs) are luminous point emitters increasingly being used to tag and track biomolecules in biological/biomedical imaging. However, their intracellular use as highlighters of single-molecule localization and nanobiosensors reporting ion microdomains changes has remained a major challenge. Here, we report the design, generation and validation of FRET-based nanobiosensors for detection of intracellular Ca(2+) and H⁺ transients. Our sensors combine a commercially available CANdot(®)565QD as an energy donor with, as an acceptor, our custom-synthesized red-emitting Ca(2+) or H⁺ probes. These 'Rubies' are based on an extended rhodamine as a fluorophore and a phenol or BAPTA (1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid) for H⁺ or Ca(2+) sensing, respectively, and additionally bear a linker arm for conjugation. QDs were stably functionalized using the same SH/maleimide crosslink chemistry for all desired reactants. Mixing ion sensor and cell-penetrating peptides (that facilitate cytoplasmic delivery) at the desired stoichiometric ratio produced controlled multi-conjugated assemblies. Multiple acceptors on the same central donor allow up-concentrating the ion sensor on the QD surface to concentrations higher than those that could be achieved in free solution, increasing FRET efficiency and improving the signal. We validate these nanosensors for the detection of intracellular Ca(2+) and pH transients using live-cell fluorescence imaging.


Assuntos
Técnicas Biossensoriais/instrumentação , Cálcio/metabolismo , Transferência Ressonante de Energia de Fluorescência/instrumentação , Espaço Intracelular/metabolismo , Imagem Molecular/métodos , Prótons , Animais , Fenômenos Biofísicos , Linhagem Celular , Endocitose , Endossomos/metabolismo , Corantes Fluorescentes/química , Íons , Lisossomos/metabolismo , Nanopartículas , Pontos Quânticos/química , Rodaminas/química , Titulometria
7.
Chem Sci ; 6(10): 5928-5937, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29861916

RESUMO

Monitoring intracellular pH has drawn much attention due to its undeniably important function in cells. The widespread development of fluorescent imaging techniques makes pH sensitive fluorescent dyes valuable tools, especially red-emitting dyes which help to avoid the overcrowded green end of the spectral band. Herein, we present H-Rubies, a family of pH sensors based on a phenol moiety and a X-rhodamine fluorophore that display a bright red fluorescence upon acidification with pKa values spanning from 4 to 9. Slight structural modifications led to dramatic changes in their physicochemical properties and a relationship between their structures, their ability to form H-aggregates, and their apparent pKa was established. While molecular form H-Rubies can be used to monitor mitochondrial acidification of glioma cells, their functionalised forms were linked via click chemistry to dextrans or microbeads containing a near infrared Cy5 (Alexa-647) in order to provide ratiometric systems that were used to measure respectively the phagosomal and endosomal pH in macrophages (RAW 264.7 cells) using flow cytometry.

8.
Biochim Biophys Acta ; 1843(10): 2284-306, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24681159

RESUMO

Most chemical and, with only a few exceptions, all genetically encoded fluorimetric calcium (Ca(2+)) indicators (GECIs) emit green fluorescence. Many of these probes are compatible with red-emitting cell- or organelle markers. But the bulk of available fluorescent-protein constructs and transgenic animals incorporate green or yellow fluorescent protein (GFP and YFP respectively). This is, in part, not only heritage from the tendency to aggregate of early-generation red-emitting FPs, and due to their complicated photochemistry, but also resulting from the compatibility of green-fluorescent probes with standard instrumentation readily available in most laboratories and core imaging facilities. Photochemical constraints like limited water solubility and low quantum yield have contributed to the relative paucity of red-emitting Ca(2+) probes compared to their green counterparts, too. The increasing use of GFP and GFP-based functional reporters, together with recent developments in optogenetics, photostimulation and super-resolution microscopies, has intensified the quest for red-emitting Ca(2+) probes. In response to this demand more red-emitting chemical and FP-based Ca(2+)-sensitive indicators have been developed since 2009 than in the thirty years before. In this topical review, we survey the physicochemical properties of these red-emitting Ca(2+) probes and discuss their utility for biological Ca(2+) imaging. Using the spectral separability index Xijk (Oheim M., 2010. Methods in Molecular Biology 591: 3-16) we evaluate their performance for multi-color excitation/emission experiments, involving the identification of morphological landmarks with GFP/YFP and detecting Ca(2+)-dependent fluorescence in the red spectral band. We also establish a catalog of criteria for evaluating Ca(2+) indicators that ideally should be made available for each probe. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.


Assuntos
Cálcio/análise , Corantes Fluorescentes/química , Imagem Molecular/métodos , Optogenética/métodos , Fotoquímica/métodos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Benzofuranos/química , Compostos de Boro/química , Cálcio/metabolismo , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Humanos , Imidazóis/química , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Rodaminas/química , Espectrometria de Fluorescência , Termodinâmica , Proteína Vermelha Fluorescente
9.
Nano Lett ; 14(6): 2994-3001, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24754795

RESUMO

Small-molecule chemical calcium (Ca(2+)) indicators are invaluable tools for studying intracellular signaling pathways but have severe shortcomings for detecting local Ca(2+) entry. Nanobiosensors incorporating functionalized quantum dots (QDs) have emerged as promising alternatives but their intracellular use remains a major challenge. We designed cell-penetrating FRET-based Ca(2+) nanobiosensors for the detection of local Ca(2+) concentration transients, using commercially available CANdot565QD as a donor and CaRuby, a custom red-emitting Ca(2+) indicator, as an acceptor. With Ca(2+)-binding affinities covering the range of 3-20 µM, our CaRubies allow building sensors with a scalable affinity for detecting intracellular Ca(2+) transients at various concentrations. To facilitate their cytoplasmic delivery, QDs were further functionalized with a small cell-penetrating peptide (CPP) derived from hadrucalcin (HadUF1-11: H11), a ryanodine receptor-directed scorpion toxin identified within the venom of Hadrurus gertschi. Efficient internalization of QDs doubly functionalized with PEG5-CaRuby and H11 (in a molar ratio of 1:10:10, respectively) is demonstrated. In BHK cells expressing a N-methyl-d-aspartate receptor (NMDAR) construct, these nanobiosensors report rapid intracellular near-membrane Ca(2+) transients following agonist application when imaged by TIRF microscopy. Our work presents the elaboration of cell-penetrating FRET-based nanobiosensors and validates their function for detection of intracellular Ca(2+) transients.


Assuntos
Técnicas Biossensoriais/métodos , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Peptídeos Penetradores de Células/química , Transferência Ressonante de Energia de Fluorescência , Pontos Quânticos/química , Animais , Cricetinae , Células HEK293 , Humanos , Venenos de Escorpião/química
10.
J Nanosci Nanotechnol ; 14(9): 6738-47, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25924325

RESUMO

Polyelectrolyte complexes based on electropolymerized phenothiazine dyes (Methylene Blue and Methylene Green), poly(allylamine hydrochloride), polystyrene sulfonate and native DNA from salmon sperm have been for the first time obtained by self-assembling on the glassy carbon electrode using the layer-by-layer assembly and characterized using direct current voltammetry and electrochemical impedance spectroscopy. The changes in the charge transfer resistance and capacitance are attributed to the charge separation and the regularity of the layers depending on the number of layers and the position of DNA within the complex. Fenton reagent increases the resistance of the outer interface of the modifier with the maximal effect for the coatings including polymeric form of Methylene Green based coatings and direct contact of the DNA and polyphenothiazines. Meanwhile the selectivity of the response was found higher for the coatings based on poly(Methylene Blue). The difference in the behavior of the polyelectrolyte complex including different components makes it possible to distinguish the response related to the DNA damage and changes in the redox status of polyphenothiazines.


Assuntos
Técnicas Biossensoriais/métodos , Corantes/química , DNA/química , Técnicas Eletroquímicas/métodos , Eletrólitos/química , Polímeros/química , DNA/análise , Nanoestruturas/química , Polímeros/análise
11.
J Am Chem Soc ; 134(36): 14923-31, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22816677

RESUMO

We designed Calcium Rubies, a family of functionalizable BAPTA-based red-fluorescent calcium (Ca(2+)) indicators as new tools for biological Ca(2+) imaging. The specificity of this Ca(2+)-indicator family is its side arm, attached on the ethylene glycol bridge that allows coupling the indicator to various groups while leaving open the possibility of aromatic substitutions on the BAPTA core for tuning the Ca(2+)-binding affinity. Using this possibility we now synthesize and characterize three different CaRubies with affinities between 3 and 22 µM. Their long excitation and emission wavelengths (peaks at 586/604 nm) allow their use in otherwise challenging multicolor experiments, e.g., when combining Ca(2+) uncaging or optogenetic stimulation with Ca(2+) imaging in cells expressing fluorescent proteins. We illustrate this capacity by the detection of Ca(2+) transients evoked by blue light in cultured astrocytes expressing CatCh, a light-sensitive Ca(2+)-translocating channelrhodopsin linked to yellow fluorescent protein. Using time-correlated single-photon counting, we measured fluorescence lifetimes for all CaRubies and demonstrate a 10-fold increase in the average lifetime upon Ca(2+) chelation. Since only the fluorescence quantum yield but not the absorbance of the CaRubies is Ca(2+)-dependent, calibrated two-photon fluorescence excitation measurements of absolute Ca(2+) concentrations are feasible.


Assuntos
Cálcio/análise , Ácido Egtázico/análogos & derivados , Corantes Fluorescentes/química , Indicadores e Reagentes/química , Fótons , Animais , Astrócitos/química , Astrócitos/efeitos dos fármacos , Ácido Egtázico/síntese química , Ácido Egtázico/química , Ácido Egtázico/farmacocinética , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/farmacocinética , Indicadores e Reagentes/síntese química , Indicadores e Reagentes/farmacocinética , Camundongos , Camundongos Endogâmicos , Estrutura Molecular
12.
Chem Soc Rev ; 41(11): 4189-206, 2012 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-22509497

RESUMO

Living cells interfaced with a range of polyelectrolyte coatings, magnetic and noble metal nanoparticles, hard mineral shells and other complex nanomaterials can perform functions often completely different from their original specialisation. Such "cyborg cells" are already finding a range of novel applications in areas like whole cell biosensors, bioelectronics, toxicity microscreening, tissue engineering, cell implant protection and bioanalytical chemistry. In this tutorial review, we describe the development of novel methods for functionalisation of cells with polymers and nanoparticles and comment on future advances in this technology in the light of other literature approaches. We review recent studies on the cell viability and function upon direct deposition of nanoparticles, coating with polyelectrolytes, polymer assisted assembly of nanomaterials and hard shells on the cell surface. The cell toxicity issues are considered for many practical applications in terms of possible adverse effects of the deposited polymers, polyelectrolytes and nanoparticles on the cell surface.


Assuntos
Nanoestruturas/química , Polímeros/química , Bactérias/química , Sobrevivência Celular , Eletrólitos , Eritrócitos/química , Fungos/química , Humanos
13.
Langmuir ; 27(23): 14386-93, 2011 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-22032495

RESUMO

Functionalized living cells are regarded as effective tools in directed cell delivery and tissue engineering. Here we report the facile functionalization of viable isolated HeLa cells with superparamagnetic cationic nanoparticles via a single-step biocompatible process. Nanoparticles are localized on the cellular membranes and do not penetrate into the cytoplasm. The magnetically responsive cells are viable and able to colonize and grow on substrates. Magnetically facilitated microorganization of functionalized cells into viable living clusters is demonstrated. We believe that the technique described here may find a number of potential applications in cell-based therapies and in development of whole-cell biosensors.


Assuntos
Materiais Biocompatíveis/química , Compostos Férricos/química , Magnetismo , Nanopartículas/química , Técnicas Biossensoriais , Cátions/química , Membrana Celular/metabolismo , Sobrevivência Celular , Células Cultivadas , Citoplasma/metabolismo , Compostos Férricos/síntese química , Células HeLa , Humanos , Microscopia de Fluorescência , Tamanho da Partícula , Propriedades de Superfície
14.
Colloids Surf B Biointerfaces ; 88(2): 656-63, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21855301

RESUMO

Here we report fabrication of artificial free-standing yeast biofilms built using sacrificial calcium carbonate-coated templates and layer-by-layer assembly of extracellular matrix-mimicking polyelectrolyte multilayers. The free-standing biofilms are freely floating multilayered films of oppositely charged polyelectrolytes and live cells incorporated in the polyelectrolyte layers. Such biofilms were initially formed on glass substrates of circular and ribbon-like shapes coated with thin layers of calcium carbonate microparticles. The templates were then coated with cationic and anionic polyelectrolytes to produce a supporting multilayered thin film. Then the yeast alone or mixed with various micro- and nanoparticle inclusions was deposited onto the multilayer composite films and further coated with outer polyelectrolyte multilayers. To detach the biofilms from the glass substrates the calcium carbonate layer was chemically dissolved yielding free-standing composite biofilms. These artificial biofilms to a certain degree mimic the primitive multicellular and colonial species. We have demonstrated the added functionality of the free-standing artificial biofilms containing magnetic, latex and silver micro- and nanoparticles. We have also developed "symbiotic" multicellular biofilms containing yeast and bacteria. This approach for fabrication of free-standing artificial biofilms can be potentially helpful in development of artificial colonial microorganisms composed of several different unicellular species and an important tool for growing cell cultures free of supporting substrates.


Assuntos
Biofilmes/crescimento & desenvolvimento , Saccharomyces cerevisiae/crescimento & desenvolvimento , Carbonato de Cálcio/química , Microscopia de Força Atômica , Microscopia Confocal , Polímeros/química
15.
Anal Methods ; 3(3): 509-513, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32938064

RESUMO

We report the fabrication of an amperometric whole-cell herbicide biosensor based on magnetic retention of living cells functionalised with magnetic nanoparticles (MNPs) on the surface of a screen-printed electrode. We demonstrate that Chlorella pyrenoidosa microalgae cells coated with biocompatible MNPs and retained on the electrode with a permanent magnet act as a sensing element for the fast detection of herbicides. The magnetic functionalisation does not affect the viability and photosynthesis activity-mediated triazine herbicide recognition in microalgae. The current of ferricyanide ion was recorded during alternating illumination periods and biosensor fabricated was used to detect atrazine (from 0.9 to 74 µM) and propazine (from 0.6 to 120 µM) (the limits of detection 0.7 and 0.4 µM, respectively). We believe that the methodology presented here can be widely used in fabrication of a number of whole cell biosensors since it allows for efficient and reversible cells immobilisation and does not affect the cellular metabolism.

16.
Macromol Biosci ; 10(10): 1257-64, 2010 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-20641044

RESUMO

Green algae are a promising platform for the development of biosensors and bioelectronic devices. Here we report a reliable single-step technique for the functionalisation of living unicellular green algae Chlorella pyrenoidosa with biocompatible 15 nm superparamagnetic nanoparticles stabilised with poly(allylamine hydrochloride). The magnetised algae cells can be manipulated and immobilised using external permanent magnets. The distribution of the nanoparticles on the cell walls of C. pyrenoidosa was studied by optical and fluorescence microscopy, TEM, SEM and EDX spectroscopy. The viability and the magnetic properties of the magnetised algae are studied in comparison with the native cells. The technique may find a number of potential applications in biotechnology and bioelectronics.


Assuntos
Chlorella/citologia , Magnetismo , Nanopartículas/química , Polímeros/química , Materiais Biocompatíveis/química , Técnicas Biossensoriais , Teste de Materiais
17.
Langmuir ; 26(4): 2671-9, 2010 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-20141208

RESUMO

Here we report the three-dimensional assembly of carbon nanotubes on the polyelectrolyte-coated living Saccharomyces cerevisiae cells using the polyelectrolyte-mediated layer-by-layer approach. Synthetic polyelectrolytes poly(allylamine hydrochloride) and poly(sodium 4-styrenesulfonate) were layer-by-layer deposited on the surfaces of the yeast cells followed by the deposition of water-soluble oxidized multiwalled carbon nanotubes (MWNTs) and an additional outermost polyelectrolyte bilayer. This resulted in the fabrication of polyelectrolyte/nanotubes composite coatings on the cell walls of the yeast cells, which could be clearly seen using the conventional optical microscopy. Transmission and scanning electron microscopy was applied to further investigate the composite coatings. Viability of the encapsulated cells was confirmed using the intercellular esterase activity test. Finally, electrochemical studies using voltammetry and electrochemical impedance measurements were performed, indicating that the composite polyelectrolytes/MWNTs coatings sufficiently affect the electron mediation between the encapsulated yeast cells and the artificial electron acceptor, making it possible to distinguish between living and dead cells. The technique described here may find potential application in the development of microelectronic devices, core-shell and hollow composite microparticles, and electrochemical cell-based biosensors.


Assuntos
Nanotubos de Carbono/química , Polímeros/química , Saccharomyces cerevisiae/citologia , Eletrólitos/química , Polímeros/síntese química , Propriedades de Superfície
18.
Anal Bioanal Chem ; 395(8): 2559-67, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19795108

RESUMO

A simple layer-by-layer method to coat the bacterial cells with gold and silver nanoparticles (AuNPs and AgNPs) for the acquisition of surface-enhanced Raman scattering (SERS) spectra is reported. First, the bacteria cell wall is coated with poly (allylamine hydrochloride) (PAH), a positively charged polymer, and then with citrate reduced Au or AgNPs. In order to increase the stability of the coating, another layer of PAH is prepared on the surface. The SEM and AFM images indicate that the nanoparticles are in the form of both isolated and aggregated nanoparticles on the bacterial wall. The coating of bacterial cells with AgNPs or AuNPs not only serves for their preparation for SERS measurement but also helps to visualize the coated of bacterial cells under the ordinary white-light microscope objective due to efficient light-scattering properties of Au and AgNPs. A comparative study single versus aggregates of bacterial cells is also demonstrated for possible single bacterial detection with SERS. The two bacteria that differ in shape and cell wall biochemical structure, Escherichia coli and Staphylococcus cohnii, Gram-negative and -positive, respectively, are used as models. The preliminary results reveal that the approach could be used for single bacterial cell identification.


Assuntos
Bactérias/química , Bactérias/metabolismo , Materiais Revestidos Biocompatíveis , Ouro/química , Nanopartículas Metálicas/química , Prata/química , Análise Espectral Raman/métodos , Humanos
19.
Langmuir ; 25(8): 4628-34, 2009 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-19239251

RESUMO

We report the layer-by-layer coating of living fungi cells (Saccharomyces cerevisiae and Trichoderma asperellum) with polyelectrolytes poly(allylamine hydrochloride)/sodium poly(styrene sulfonate) and bovine serum albumin/DNA and citrate-stabilized gold and silver nanoparticles. It was found that the nanoparticles were effectively incorporated between oppositely charged polyelectrolyte layers, modifying the topography and the roughness of cell walls. The formation of large aggregates of nanoparticles on the cell walls of encapsulated cells was shown. It was found that the encapsulated cells preserved their viability and the shells were soft enough to allow the growth of mycelium. The surface-enhanced Raman scattering (SERS) was used to investigate the biochemical environments of the gold and silver nanoparticles immobilized on the surface of T. asperellum conidia. The SERS spectra from encapsulated conidia and polyelectrolytes indicate that both gold and silver nanoparticles interact with cell walls from different locations, and nanoparticle-polyelectrolyte interaction is limited. The approach described in this paper might have potential applications in modification of living cells.


Assuntos
Nanopartículas Metálicas/química , Nanotecnologia/métodos , Saccharomyces cerevisiae/fisiologia , Trichoderma/metabolismo , Animais , Bovinos , Parede Celular/metabolismo , Eletrólitos/química , Ouro/química , Nanopartículas/química , Poliaminas/química , Poliestirenos/química , Soroalbumina Bovina/química , Prata/química , Análise Espectral Raman/métodos
20.
Anal Bioanal Chem ; 388(2): 367-75, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17393148

RESUMO

We report the development of a novel quartz crystal microbalance immunosensor with the simultaneous measurement of resonance frequency and motional resistance for the detection of antibodies to double-stranded DNA (dsDNA). The immobilization of poly(L-lysine) and subsequent complexation with DNA resulted in formation of a sensitive dsDNA-containing nanofilm on the surface of a gold electrode. Atomic force microscopy has been applied for the characterization of a poly(L-lysine)-DNA film. After the blocking with bovine serum albumin, the immunosensor in flow-injection mode was used to detect the antibodies to dsDNA in purified protein solutions of antibodies to dsDNA and to single-stranded DNA, monoclonal human immunoglobulin G, DNase I and in blood serum of patients with bronchial asthma and systemic lupus erythematosus. Experimental results indicate high sensitivity and selectivity of the immunosensor.


Assuntos
Anticorpos Antinucleares/sangue , Técnicas Biossensoriais/métodos , Quartzo/química , Animais , Anticorpos/química , Anticorpos/imunologia , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Asma/imunologia , Bovinos , DNA/química , DNA/imunologia , DNA de Cadeia Simples/imunologia , Desoxirribonucleases/química , Ouro/química , Humanos , Imunoensaio/métodos , Imunoglobulina G/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Microscopia de Força Atômica , Polilisina/química , Reprodutibilidade dos Testes , Soroalbumina Bovina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...